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Reconstruction Algorithms as a Suitable Basis for
Mesh Connectivity Compression

Raphaëlle Chaine, Pierre-Marie Gandoin and Céline Roudet

Abstract— During a highly productive period running from 1995
to about 2002, the research in lossless compression of surface
meshes mainly consisted in a hard battle for the best bitrates.
But for a few years, compression rates seem stabilized around
1.5 bit per vertex for the connectivity coding of usual triangular
meshes, and more and more work is dedicated to remeshing,
lossy compression, or gigantic mesh compression, where memory
access and CPU optimizations are the new priority. However,the
size of 3D models keeps growing, and many application fields
keep requiring lossless compression. In this paper, we present a
new contribution for single-rate lossless connectivity compression,
which first brings improvement over current state of the art
bitrates, and secondly, does not constraint the coding of the
vertex positions, offering therefore a good complementarity with
the best performing geometric compression methods. The initial
observation having motivated this work is that very often, most
of the connectivity part of a mesh can be automatically deduced
from its geometric part using reconstruction algorithms. This has
already been used within the limited framework of projectable
objects (essentially terrain models and GIS), but finds here
its first generalization to arbitrary triangular meshes, without
any limitation regarding the topological genus, the numberof
connected components, the manifoldness or the regularity.This
can be obtained by constraining and guiding a Delaunay-based
reconstruction algorithm so that it outputs the initial mesh to
be coded. The resulting rates seem extremely competitive when
the meshes are fully included in Delaunay, and are still good
compared to the state of the art in the case of scanned models.

Note to Practitioners— A 3D triangle mesh is composed of a
geometric part (the vertex coordinates) and a connectivitypart
(the description of the triangles). In this article, we showhow
to reencode such surface meshes in order to obtain near zero
connectivity cost for some class of surface meshes (and very
good rates in the general case), while guaranteeing in the same
time state-of-the-art geometry encoding cost. This methodcan
be useful in all application areas where the mesh size is a
bottleneck (typically network or storage applications). The best
results are obtained for meshes made from 3D scans (in contrast
to CAD meshes). The main current limitations of the method
are the computing times (about 1 second per 1000 points part of
the mesh, for compression which can be done off-line) and the
memory footprint.

Index Terms— Mesh, Compression, Reconstruction, Lossless,
Connectivity

I. I NTRODUCTION

For several years, meshes have played a leading role in
computer graphics, and their ability to model the world throws
them in the heart of advanced applications in all the fields
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of science, arts or leisure. If some of these applications can
tolerate a limited loss of information (provided that this loss is
well controlled and does not damage a certain visual realism),
the others, for practical or even legal reasons, impose to work
continuously with exact copies of original objects. In thiscase,
the only way of optimizing the storage and the transmission
of 3D information is to have recourse to lossless compression
methods.

A mesh is defined by a set of points (we speak of the geometry
of the mesh), and by a combinatorial structure describing
the relations between these points, using geometric objects of
higher dimensions: edges, facets (we speak of the connectivity
or the topology of the mesh). To this fundamental information
are sometimes added attributes allowing to improve the render-
ing: normals, colors or textures. If we put aside these attributes
(they relate only to a subset of the meshes met in practice),
all the difficulty for compressing 3D objects is to efficiently
process both the geometry and the connectivity of a wide class
of meshes. However, most of the methods proposed so far
stress on one of these two aspects (usually the connectivity),
generally to the detriment (or at least, not to the advantage)
of the other one, which is constrained by a description order
rarely optimal in terms of compression. In this article, we
propose a new single-rate connectivity coder which is not only
general and efficient, but also does not impose any constraint
on the coding of the geometry. In particular, it is totally
compatible with the position coders that currently proposethe
best compression rates.

We took it as given that very often, the main part of a
mesh connectivity can be deduced from its vertex set using
reconstruction methods. This remark has already been made
in the past, but the problem was to find an effective way
of describing the difference between the initial mesh and its
reconstructed version. Indeed, within the framework of lossless
compression, it is indispensable to be able to correct these
errors in order to obtain a decoded mesh perfectly identicalto
the original mesh. But rather than describe the difference to the
initial object at the end of the reconstruction phase, we suggest
adapting an existing algorithm so that it can accept occasional
codes modifying its default behavior at the moments when it
would commit an ”error” of reconstruction with regard to the
initial mesh.

Having placed our work in the historical context of 3D
compression and 3D reconstruction (Sec. II), we will expose
the general principle of the method (Sec. III), first within the
restricted framework of Delaunay meshes, then generalized
to arbitrary triangular meshes (independent of the genus,
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the number of connected components, the regularity and the
manifoldness). Then we will detail the coding techniques and
optimization steps leading to better compression rates (Sec.
IV), before presenting some comparative results and comments
on the method performances (Sec. V).

II. CONTEXT AND PREVIOUS WORKS

A. Mesh Compression

As mentioned above, a mesh is composed of both a geometric
part (the vertex positions), and a topological part (the vertex
connectivity). Now, by looking at the whole scientific produc-
tion in mesh compression since 1995 until now, we notice
clearly that the connectivity coding has motivated most of the
proposed methods. The usual scheme consists in describing the
combinatorial structure by enumerating its vertices in a precise
order, designed to minimize the size of the code: each vertex
is coupled with a variable size symbol defining the way it is
connected to the rest of the mesh. Consequently, the geometric
coder has to work with this predefined order of the vertices,
but it can exploit the connectivity to predict their location. The
position of the currently transmitted vertex is estimated from
its neighbors, and the prediction error is the sole information to
be coded. But the order imposed by the connectivity coding
is not necessarily favorable to this prediction, as shown by
the results obtained on usual meshes by classical algorithms:
the best of them reduce the connectivity information to less
than 1 or 2 bits per vertex, while for the geometric part, the
rates rarely go down under 90% of the initial size (except
for very low quantizations). Among the works that follow this
principle, we focus here in single-rate methods, which code
and decode the mesh in one pass and do not allow progressive
visualization [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19]. To understand
how these methods compare, the reader can also refer to the
following surveys [20], [21], [22]. It is worth to mention here
that the relative stability in compression rates observed these
days can be explained by the new interest of the community
for gigantic meshes: in this framework, the challenge is to
improve the efficiency of the compression in terms of CPU
and memory requirements rather than in terms of bitrates [23],
[24], [25].

B. Prioritizing the Geometric Coding

After this first wave of works, in the knowledge that the
geometry of a mesh weighs generally much more than its
connectivity, the researchers began to propose methods giving
the priority to geometric compression. Some of them deviate
from the lossless framework by proposing algorithms that
often impose a complete remeshing of the object before ap-
plying spectral decomposition tools like wavelets, subdivision
schemes, or classic geometric methods of compression [26],
[27], [28], [29], [30], [31], [32], [33], [34], [35].

On the other hand, the works introduced by Gandoin and
Devillers and improved by Peng and Kuo [36], [37], [38]

describe a progressive and lossless compression method,
centered on the geometry, which interests us particularly
within the framework of this article. Indeed, this method
was originally designed to code an unstructured point cloud,
with the underlying idea that in many cases, the connectivity
information could be deduced from the geometry thanks to
reconstruction algorithms. So, the first version of this method
[36] proposed a multiresolution compression algorithm foran
unstructured point cloud, guaranteeing a theoretical minimal
gain ofn(log2n−2.4) (wheren denotes the number of points),
and very competitive practical performances, even compared
to the best single-rate algorithms. The method was then
extended to deal with the connectivity compression, while
remaining centered on the geometry [37]. Indeed, the kd-tree
decomposition scheme involved in the heart of the geometric
coder, is enriched with a connectivity coder that uses some
of the classical mesh simplification operations introducedby
Hoppeet al. [39], [40]). Eventually, the method has recently
been resumed by Peng and Kuo [38] who improve its perfor-
mances by imposing a priority on the cell subdivision order
in the octree, and by proposing a more effective prediction
model for the point distribution in the sub-cells generatedby
a subdivision.

C. Compression and Reconstruction

The idea to entrust a reconstruction algorithm with the task
of computing the connectivity of a mesh from its vertices
has already been used in the context of mesh compression.
Within the framework of terrain models, Kimet al. [41]
suggest transmitting only a fraction of the edges composing
the object, and using constrained Delaunay triangulation —
in 2D, since the terrain models are projectable — to find the
whole connectivity. Devillers and Gandoin [36] also mention
the compression of GIS as an application of their geometric
coder, and develop an edge coder well suited for this context,
which results in compression rates as low as 0.2 bits per vertex
for the complete connectivity. Besides, Devillerset al. show
that the minimal set to be transmitted to guarantee the exact
reconstruction of the initial model by constrained Delaunay
triangulation is constituted by the edges that are non locally
Delaunay [42].

Unfortunately, the generalization from 2.5D to 3D meshes is
not straightforward: since the mesh is not projectable any
more, the use of the constrained Delaunay triangulation is
impossible. Of course, it is possible to recourse to local
projections of the mesh [43], but we are left with the problem
(and the overcost) of joining the different parts together.
Nevertheless, the idea to use a reconstruction method driven
by a partial description of the connectivity remains extremely
promising in terms of compression results. Provided that it
could be possible to find a method both powerful and capable
of taking advantage of partial connectivity data to guarantee
an exact reconstruction whatever the initial model may be.

A first attempt to use a reconstruction algorithm to encode
connectivity information has been proposed by Lewineret al.
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[44]. The geometry is coded independently, through a kd-
tree based algorithm derived from [37] and [45] and the
connectivity is coded through an advancing front triangulation
inspired of the ball-pivoting strategy [46]. This algorithm
requires a code for each edge of an active border that is
initialized to a triangle. If the geometry of the mesh meets
good sampling conditions, the entropy of each code will be
extremely low. In Sec. V, we compare this method to ours
regarding the compression rates.

D. Reconstruction by Convection

The problem of reconstructing a surface from a set of points
has received considerable attention during the last decade
[47]. Interesting and outstanding algorithms have been issued
both in computer graphics and computational geometry, but
we have decided to focus on the algorithms of the second
category, since their combinatorial concerns are more suit-
able for lossless compression purposes. Most of computa-
tional geometry algorithms exploit the geometric properties
of structures such as the Delaunay triangulation, the Voronoi
diagram or the power diagram of the input point set, assuming
auspicious properties on the way they were sampled on the
surface (ε-sample [48]). A consistent set of facets can then
be extracted from the geometric structure, sometimes using
global heuristics or local analysis to solve ambiguities. The
existing algorithms are numerous and an attempt to classify
and distinguish them has recently been proposed in the state
of the art by Cazals and Giesen [49]. Most of these algorithms
produce triangular meshes, which makes them good candidates
to use for compression purposes.

The convection algorithm we use in our method is based on a
similar notion of flow as it was developed in the Wrap algo-
rithm by Edelsbrunner [50], and the flow complex algorithm
by Giesen and John [51]. Indeed, this reconstruction algorithm
has been inspired from a surface convection process described
by Zhao et al. [52]. They use it to initialize their surface
before running an energy minimization process in the level
set framework. Given an evolving surfaceSenclosing an input
point setP, the convection process makes each point ofSmove
inwards, along the direction of its normal, towards its closest
point in P. However, the numerical scheme they propose
can be translated in the discrete setting of a 3D Delaunay
triangulation, to make it depend on the geometry of the input
data set only, and not on the precision of some grid around
the surface. A demonstration of this result is presented by
Chaine [53] together with a subsequent convection algorithm.
A Delaunay triangulation ofP is a partition of space into
tetrahedra so that the ball circumscribed to each tetrahedron
does not contain any point ofP. The convection process is
run directly in the 3D Delaunay triangulation ofP, with an
evolving surfaceScomposed of oriented Delaunay facets.S is
initialized to the convex hull ofP. An oriented facet ofS that
does not meet the oriented Gabriel property —i.e. the inwards
half of its enclosing sphere is not empty — is attracted towards
the 3 other facets of the incident Delaunay inner tetrahedra(see
Fig. 1, for an illustration in 2D where the evolving surface is

replaced by an evolving curve, and the Delaunay tetrahedra
are replaced by Delaunay triangles). During the convection
process, thin parts can appear (see Fig. 1, c and d), on which
a surface embedded 2D version of the convection is run. A
deeper explanation of this algorithm will be presented in Sec.
III while revisiting it for compression purposes.

(a) (b)

(c) (d)

Fig. 1. Geometric convection on a 2D point set : (a) the evolving curveC
is initialized to the convex hull, (b)C locally evolves at the level of an edge
if the half-circle associated to this edge is not empty, (c) result of the initial
convection process, (d) the convection process is locally enhanced to hollow
a pocket out.

An interesting property of the convection algorithm is thatit
is driven locally, in the Delaunay triangulation of the points,
without involving a global heuristic. The topology of the
evolving surface may change during the convection process,
so that it can handle surfaces with boundaries and surfaces of
high genus. A drawback of the convection process is that it
can locally be stuck in presence of pockets [54] hiding facets,
but a simple and local point density analysis permits to hollow
them out [53].

III. PRINCIPLE OF THECOMPRESSIONALGORITHM

A. Introduction of the Convection Abilities

The benefit of using a 3D reconstruction method for compres-
sion purposes is double: first, this allows to obtain very low
costs for the coding of the connectivity — ideally, a null cost if
the reconstruction algorithm is able to find the exact structure
of the original mesh by itself —, and secondly, unlike the
previous methods of topological compression, no constraint is
imposed on the order of the vertices to the geometric coder,
which constitutes an important efficiency token.

The main difficulty consists in being able to help the recon-
struction algorithm at a reasonable cost: indeed, it is highly
improbable to design an algorithm capable of finding the
complete connectivity of a mesh from its vertex set. It is thus
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necessary to be able to alter the course of the reconstruction
process, by occasionally changing the default behavior of the
algorithm to drive it in a sure way to a result known in
advance: the structure of the initial mesh.

Among the plethora of available methods, the reconstruction
by convection is distinguishable from others by two important
assets: its qualities in terms of reconstruction — practical
accuracy and faithfulness to the original model, handling of
complex topologies, computation times —, and above all, its
ability to be effectively driven by means of simple instructions.
The first asset guarantees that the algorithm will not need
to be guided too often (small number of codes), the second
guarantees that this can be done at lower cost (compactness
of the codes).

In return, as many algorithms in computational geometry, the
convection algorithm is based on a Delaunay triangulation,and
it may be difficult to force it out of this structure. This imposes
a condition over the initial mesh: all its facets have to belong
to the 3D Delaunay triangulation of its vertex set. It is quite a
strong property that is not verified by all the 3D objects met
in practice. We will see in second stage (Sec. III-D) how to
break it.

Intuitively, the reconstruction by convection consists inembed-
ding the vertex set in a block of marble that will be sculpted
gradually, facet after facet, tetrahedron after tetrahedron, until
it takes on the shape of the object. The algorithm begins by
preparing the sculpting material: an enclosing block whichis
nothing but the convex hull of the point cloud, as well as the
network of galleries through which it is going to dig until
the final shape is reached. This network is composed of the
tetrahedra of the 3D Delaunay triangulation, and every stage
towards the object shape consists in examining a new facet of
the current surface and deciding if it is necessary or not to
open it and excavate the inside of its associated tetrahedron.
When a facet is opened, it is removed from the current surface
of the 3D object under construction, and replaced by the three
other facets of the excavated tetrahedron.

As mentioned above, the criterion that decides on this opening
is purely local: it consists of observing whether the Gabriel
half-sphere associated to the current oriented facet contains or
not the fourth vertex of the tetrahedron. If it is the case, the
oriented facet is opened and replaced in the current surfaceby
the 3 other facets of the associated tetrahedron. (If this one
is already excavated, the surface locally vanishes throughthe
current facet.) Otherwise, it is maintained on the surface.

Note that if all the facets of the initial object are in its 3D
Delaunay triangulation, they are reachable by this sculpture
process from the convex hull. The problem is to make sure
that the algorithm will not dig a facet belonging to the initial
mesh, or that, conversely, it will not be retained before having
reached such a facet. Hence the need for additional codes
allowing to modify the behavior of the convection algorithm,
and to drive it towards the object to be coded. Even if the
convection algorithm was designed to compute the structure
of a sufficiently dense mesh with a good accuracy, it will

most likely need occasional assistance to guarantee the perfect
reconstruction of any mesh.

B. Compliant Meshes

Definition: A mesh is said to becompliantif all its facets are
in the 3D Delaunay triangulation of its vertex set, and if it is
a manifold (that is to say without borders nor thin parts).

To present our method in a progressive way, we focus in this
section on compliant meshes only. Given such a meshM,
here is the general principle of the compression algorithm:

1 Build the 3D Delaunay triangulationD of the point set
P,

2 Mark the facets ofD belonging to the initial meshM,
3 Initialize the current surfaceS with the convex hull ofP

(included inD),
4 Launch the convection process onS: every oriented

facet f in S is examined in turn, and depending on
whether its Gabriel half-sphere is empty or not,f is, by
default, maintained onS or replaced by its 3 neighbors
in D. To modify this default behavior of the convection
reconstruction, it is necessary to locate the oriented facets
of S for which the algorithm has to act differently. It is
thus indispensable to define a completely deterministic
traversal of the facets inS, so that thenth oriented
facet met during the compression would also be the
nth oriented facet met during the decompression. More
generally, it is necessary to ensure the synchronization of
the algorithms of compression and decompression so that
the nth action of the coder matches thenth action of the
decoder. Thanks to these reference marks, the behavior
of the convection process can be safely altered in the
following two circumstances:

a) when the convection asks for the opening of a facet
f that belongs toM, the coder forbids this opening,
and codes the index off (more exactly, the moment
when f is met in the algorithm) to warn the decoder
that at this precise moment of the reconstruction, it
has to break the rules of the convection algorithm.
We will call this a RDG event (Retain Despite the
Geometry),

b) at the end of this first step, it is possible that
some oriented facets ofS — those whose Gabriel
half-spheres are empty and thus the convection did
not decide to dig —, do not belong toM. Therefore,
it is necessary to specify to the decompression
algorithm that these oriented facets must be forced,
against the convection rules: for each remaining
oriented facet ofS not belonging toM, the coder
transmits its index (i.e. the moment when it is
met) and locally relaunches the convection process
by forcing its opening. We call this a ODG event
(Open Despite the Geometry). Note that by thus
delaying the enforced opening of facets in a second
step, rather than opening them the first time they
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are met, some facets that were due to be forced can
disappear by autointersection ofS: in some cases,
the convection process reaches and automatically
opens the opposite side (or half-facet) of a facet
previously encountered but not opened then. This
permits to save some ODG codes.

Fig. 2 is a step by step illustration of the algorithm in 2D, inthe
case where the deterministic traversal of the facets is induced
by a breadth-first traversal of the Delaunay triangulation,
starting from the convex hull. To be more illustrative, time
has been incremented at each step of the algorithm, but in
practice, it is enough to increase it each time the convection
is willing to open a facet or each time a retained facet is tested
for confirmation.

A detailed description of step 4 can thus be given through a
recursive functionConvectionapplied to the current surface
S. An other difference with the step by step example is also
that the facets are yet visited through a depth first traversal
of the Delaunay triangulation. For each oriented facetf , let
fasso denote the oriented facet associated tof , that is to say
the oriented facet constructed on the same vertices asf , but
with the opposite orientation. Whenf and fasso are both in
the surfaceS, that means they belong to a thin part ofS.
Besides, letf1, f2 and f3 denote the 3 neighbors off in the
3D Delaunay triangulationD, i.e. the 3 other facets of the
tetrahedron that is removed whenf is opened. Finally, we
would like to draw the reader’s attention to the fact that the
reference marks transmitted to the decoder are not exactly
absolute moments of events in the compression process, but
rather intervals between two such moments (which explains
the presence of the instructions ”time← 0” in the detailed
algorithms). This well-known technique of differential coding
allows to reduce the size of the transmitted codes.

FunctionConvection(S: Sur f ace):

while S 6= /0 do
f ← pop first oriented facet inS
if Gabriel half-sphere off is emptythen

push f at the end ofStemp

else
if f ∈M then {RDG event}

outputtime
time← 0
push f at the end ofSf inal

else
if f such thatfasso∈ S (resp.Stemp) then

remove fasso from S (resp.Stemp)
else

push{ f1, f2, f3} at the end ofS
end if
time← time+1

end if
end if

end while

With this recursive definition of theConvectionfunction, the

step 4 of our algorithm amounts to the following:

Main function:

S← convex hull ofP
Sborder← /0 {set of facets creating a thin part}
Sf inal← /0 {set of facets that are inM}
Stemp← /0 {set of facets candidates to be inM}
time← 0
Convection(S)
while Stemp 6= /0 do

f ← pop first oriented facet inStemp

if f such thatfasso∈ Stemp then
remove fasso from Stemp

push{ f , fasso} at the end ofSborder

else
if f ∈M then

push f at the end ofSf inal

time← time+1
else{ODG event}

outputtime
time← 0
S← { f1, f2, f3}
Convection(S)

end if
end if

end while

At the end of the compression algorithm, the convection has
been driven towards the initial meshM, and the correcting data
have been stored for the decompression algorithm. However,a
last stage remains that consists in cleaning thin parts possibly
generated by the convection. Indeed, since we first assumed
that the initial mesh was a manifold, it suffices to delete all
these thin parts, that is to say each facet ofSwhose associated
facet is also onS. In the algorithm described above, the thin
parts exactly match the setSborder.

C. Non Manifold Meshes

In this section, we are going to extend the previous algorithm
to non manifold, thin parts meshes. It suffices to modify the
final stage regarding the treatment of thin parts created by the
algorithm. This stage is replaced by a new convection process,
but this time in its 2D version, and on thin parts only. In this
framework, the convection updates a curveC constituted by
the edges composing the boundaries of the thin parts. The
oriented edges ofC are examined in turn: an oriented edge
whose Gabriel half-circle is empty will be kept onC, whereas
an oriented edge in the opposite case will be removed and
replaced inC by the two other oriented edges of its incident
triangle (e1 ande2 in the algorithm detailed below).

The general principle remains the same as in the 3D version
of the algorithm, and each edge that is opened against the
convection rules (ODG event) launches a new 2D convection
process. Note that there is no setCborder similar to the previous
Sborder. Here is a detailed version of the portion of the
compression algorithm dedicated to the processing of the thin
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parts. It adds to the steps 1 to 4 described in the previous
section:

5 Processing of thin parts
FunctionConvection2D(C : Curve):

while C 6= /0 do
e← pop first oriented edge inC
if Gabriel half-circle ofe is emptythen

pushe at the end ofCtemp

else
if e∈M then {RDG event}

outputtime
time← 0
pushe at the end ofCf inal

else
if e such thateasso∈C (resp.Ctemp) then

removeeasso from C (resp.Ctemp)
else

push{e1,e2} at the end ofC
end if
time← time+1

end if
end if

end while
Main 2D function:

C← boundaries ofSborder

Cf inal← /0;Ctemp← /0;time← 0

Convection2D(C)
while Ctemp 6= /0 do

e← pop first oriented edge inCtemp

if e such thateasso∈Ctemp then
removeeasso from Ctemp

else
if e∈M then

pushe at the end ofCf inal

time← time+1
else{ODG event}

outputtime
time← 0
C← {e1,e2}
Convection2D(C)

end if
end if

end while

D. Non Delaunay Meshes

As previously described, the method can only be applied to
meshes whose facets belong to the 3D Delaunay triangulation
of their vertex set. Indeed, we saw that this structure constitutes
the support of the convection algorithm, and that it is thus
impossible for the current surface to reach a non Delaunay
facet. Nevertheless, most of the meshes met in practice contain
a fraction of non Delaunay facets (see the unfavorable case of
Fig. 3). So, to make the method widely usable, it is necessary
to manage the coding of such facets. A simple and efficient
way to do this is to code explicitly all the non Delaunay

facets of the initial mesh in the same time as its vertices,
using the method of Gandoin and Devillers [37] (which we
will note GD in the following), or any other method efficient
at coding sparse facets. More precisely, non Delaunay facets
constitute patches on the surface of the mesh. Before launching
the convection process, the connectivity of these patches is
transmitted to the GD coder. Then, the algorithm previously
described is applied to the mesh minus the non Delaunay
facets. Consequently, even if the initial mesh is a manifold,
the convection process is going to perform on a mesh with
boundaries. As shown in the previous section, our method can
handle this case, but the presence of boundaries induces a
significant increase in the number of driving codes: indeed,
each facet of the mesh will be reached twice, first through a
facet oriented outwards, then through the associated oriented
facet lying on the internal side of the object surface. We pro-
pose several heuristics in order to limit this phenomenon. The
intuitive idea is to block the convection surface temporarily,
when it is about to cross a patch — a facet opening is delayed
if the tetrahedron behind it intersects the mesh —, so as to
favor the discovery of the initial mesh facets from outside (see
Fig. 4). Thus, transmitting the total number of mesh facets to
the decoder will allow to stop the convection process as soon
as they are all discovered, which will drastically reduce the
number of corrective codes.

Fig. 3. Fandisk: complete (12946 facets), then showing the non Delaunay
facets only (1104 facets representing 8.5% of the set)

In the decoding stage, the vertex set is first obtained from
the GD decoder, as well as the non Delaunay patches con-
nectivity. Then the mesh without the patches is reconstructed
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by the algorithm of driven convection. At last, the patches
connectivity is merged into the reconstructed leaky mesh. We
thus see that our method improves the results of the method
of Gandoin and Devillers only for meshes whose facets are
mainly Delaunay. In the limit case where all the mesh facets
would be non Delaunay, we would come across the GD coder
compression rates.

Fig. 4. 2D Example: the original curve to be coded is in red thick
line, including non Delaunay patches (parts in solid line).The Delaunay
triangulation is in black thin line. The current evolving convection curve,
in orange thick line, is temporarily blocked (parts in solidline) to avoid
intersecting the patches. The remaining hidden Delaunay edges of the original
curve will thus be discovered later, when the convection process will be
relaunched to intersect the patches.

IV. CODING AND OPTIMIZATION

We saw in Sec. III that the codes resulting from the com-
pression algorithm are a sequence of positive or null integers,
representing the number of facets met between two special
interventions of the algorithm, that is to say between two
facets for which the algorithm does not follow the rules of
the reconstruction by convection (ODG and RDG events).
To minimize the output size, we have chosen to transmit
these numbers to an arithmetic coder, which is able to code
a sequence of symbols in a nearly optimal way, given a
probability model. Thus, ifp(s) denotes the probability of
appearance of the symbols, the arithmetic coder will encode
s on log2(1/p(s)) + ε. In particular, this entropic coder is
capable of coding a symbol on a fractional number of bits.

The main difficulty consists in defining a good probability
model for the integers to be coded. The first solution consists
in computing statistical data for each mesh and transmitting
the probability table in the header of the compressed file. But
ideally, to save the transmission of such a table, we would like
to model the behavior of the sequence to be coded for a wide
class of meshes, or alternatively, to design an adaptive model
recomputing the probability of a symbol each time it occurs.
Several kinds of model can be used, according to the size
of the context from which the probability is estimated. For
the order-0 model, each integer has an absolute probability
for the whole coding sequence, independent from the context.
For the order-1 model, the probability of an integer dependson

the value of the previously transmitted integer, and so on. We
have finally opted for an adaptive order-1 model specifically
designed to take advantage of the particular structure of the
integer sequence. For instance, this model handles long runs
of null integer frequently occurring in the sequence.

As a matter of fact, these runs often correspond to large
patches of facets that have to be forced (ODG events) because
the Gabriel criterion is too restrictive compared to the local
density of the mesh. Statistics illustrate that the convection
process is rarely wrong when it decides to open a facet; on the
contrary, at the end of the convection, a lot of facets have been
retained but do not belong to the initial mesh. To encourage
the convection algorithm to open more facets, we have relaxed
the Gabriel criterion under some conditions. Intuitively,a facet
will be opened when its size is ”big” with regard to the vertex
density in its neighborhood [53]. By setting this ratio to a near
optimal value, the improvements can be drastic, particularly
in the case of poorly sampled meshes where the number of
driving codes can be lowered by about 50%.

V. EXPERIMENTAL RESULTS

The table I shows the results of the method applied to some
usual meshes (the rates are in bits per vertex). The objects
fandisk, blob, andhorseare there essentially for comparison
purposes, since they have been used for example by Touma
and Gotsman [5]. The Stanfordbunnyis also a very classical
mesh, widely used in 3D compression for about ten years.
However, these models are not very representative of today
meshes, whose number of vertices is much higher. The last
meshes are more typical of what can be found nowadays. The
hand (see Fig. 5) andmax planck (see Fig. 5) can be found
on http://shapes.aim-at-shape.net, while thetriple hecate(see
Fig. 5) comes fromLe Louvre C2RMF lab.

TABLE I

EXPERIMENTAL RESULTS ON USUAL MESHES

model number of connectivity computing time
(number facets: rate in bpv in seconds:

of total / (Del. + non compression /
vertices) non Del. Del. facets) decompression

fandisk 12 946 2.08 14
(6 475) 8.5 % (1.22 + 0.86) 14

blob 16 068 2.68 17
(8 036) 5.2 % (1.98 + 0.70) 15
horse 39 698 2.00 26

(19 851) 3.8 % (1.48 + 0.52) 22
bunny 71 890 0.08 18

(35 947) 0.0 % (0.08 + 0.00) 14
triple hecate 151 462 0.04 46

(75 729) 0.0 % (0.04 + 0.00) 37
ford 188 024 8.43 40

(97 887) 57.0 % (3.43 + 5.00) 29
max planck 398 043 0.90 201
(199 169) 1.7 % (0.69 + 0.21) 157

ajax 547 117 0.14 154
(273 383) 0.0 % (0.14 + 0.00) 117

hand 654 596 0.19 342
(327 290) 0.7 % (0.11 + 0.08) 288

UNC powerplant 12 748 510 > 2.16 16316
(11 070 509) 48.9 % (2.16 + -) 15538
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The first remark is that the rates obtained for the models
fandisk, blob, horse, ford, UNC powerplantare not especially
competitive with regard to the best current methods (for ex-
ample, [18], whose algorithm yields 0.74 bpv for thefandisk,
and 0.96 bpv for thehorse). The main reason is that the vertex
set of these meshes are clearly notε-sample and therefore,
not favorable to the convection algorithm (but note that on
these meshes, we gain on the geometry coding by using the
GD coder, as shown in [37]). On the contrary, thehand and
maxplanckare correctly sampled and give a quite good idea
of what the method can achieve when the point densities
are reasonable. Thetriple hecateandajax models are highly
compliant meshes, not only because their facets are fully in
Delaunay, but also because they were constructed from a set
of points, using some reconstruction algorithm similar to the
convection process. However, this kind of mesh is more and
more widespread since a large class of objects are obtained
from scanning and reconstruction.

Besides, we can notice that the rates associated to the coding of
non Delaunay facets are quite bad facing their small number,
and heavy penalize the global rates. Indeed, the GD coder is
not optimal for sparse connectivity, and it should be possible
to find a better way to code this small set of facets.

The last column of the table shows the computing user times
in seconds for the connectivity compression / decompression
of the meshes on a Pentium IV 3.0 Ghz 2 Go RAM computer.
Globally, these times probably higher compared to classical
methods that explicitly encode the whole connectivity, using
some surface-based traversal of the mesh vertices. One can
incriminate the precomputation and the 3D traversal of the
Delaunay triangulation required by the convection process.
This constraint particularly intends our method to applica-
tions where storage space or network bandwidth are more
limited resources than processing power. However, a second
version of the algorithm could be developed where Delaunay
computation is not explicit any more. The current version
also encounters timings limitations when the mesh is not
entirely included in Delaunay. This is due to intersection
determinations between the Delaunay triangulation and non-
Delaunay mesh facets.

We can compare our algorithm to the only other compression
method using reconstruction through the 3 meshes we have
in common: the method [44] obtains 1.19 bpv for the horse,
2.63 bpv for the fandisk, and 1.18 bpv for the bunny, which is
globally slightly higher than the rates of the table I. Regarding
the methods [15], [16], [18], derived from the Touma and
Gotsman’s coding principle [5], they obtain rates around 1.5
bpv for usual meshes, and can achieve very low rates for highly
regular meshes where vertex degrees are almost constant. We
don’t have any result of these algorithms for meshes fully
included in Delaunay, but there is no particular reason why
their rates would be better in such cases.

Another limitation of the algorithm is related to the memory
footprint. Indeed, in its current implementation (using the
CGAL library [55]), the method needs to store the entire
Delaunay tetrahedralization enriched with additional infor-

mation. The memory cost of this structure is 30 bytes per
vertex (geometry: 12, OFF file production: 8, Delaunay tetra-
hedralization: 4, vertex density information: 4 + 2 booleans)
and 35 bytes per tetrahedron (Delaunay tetrahedralization:
32, surface and compression information: 3), given that for
meshes meeting good sampling conditions (ie. meshes whose
local density of vertices is proportional to the distance tothe
skeleton), the number of tetrahedra is nearly proportionalto the
number of vertices [56]. Practically, this limits our method to
meshes containing about 10 millions of triangles. Nevertheless,
out-of-core or even streaming adaptations are conceivable
since it has been shown that the convection algorithm could be
applied to a data stream organized in successive layers [57]. In
the same way, the GD method used in this article to compress
the non Delaunay facets is limited for now to meshes under
about 1 million of vertices, but an out-of-core adaptation is
currently studied. Therefore we cannot give the compression
ratio of the non Delaunay submesh for theUNC powerplant.

Tab. I contains numerical information about 4 models gen-
erated by CAD softwares: fandisk, horse, ford and UNC
powerplant. As said above, our method is clearly not appro-
priate for this kind of model. Indeed,CAD meshes are often
characterized by large triangles whose size is absolutely not
related to the distance to the skeleton (see Fig. 6(a) and
(b)). Moreover, many of these triangles do not belong to the
3D Delaunay triangulation, even if, in numerous models, a
single flip into cocircular quadruplets or a slight perturbation
over vertex coordinates would drastically reduce the ratioof
non Delaunay facets. This situation particularly occurs inlarge
planar regions containing a lot of coplanar quadruplets, ascan
be seen on Fig. 3. For this kind of model, some other lossless
compression methods should give better results [5], [15], [37],
although none of them has been specially designed for this
class of meshes.

VI. CONCLUSION AND FUTURE WORK

We have presented a new method of lossless single-rate
connectivity compression based on a semiautomatic recon-
struction process able to deduce most of the mesh connectivity
from its sole vertex set, and occasionally guided through
compact codes that alter its default behavior when necessary.
This method is originally suitable for Delaunay embedded
meshes. We have also described a generalization removing
this constraint inherent to the convection algorithm, using
a separated coding of non Delaunay patches, as well as
heuristics minimizing the number of driving codes during the
convection process. So the final algorithm is able to compress
any kind of 3D mesh, including non manifold ones, without
any constraint on the topological genus or the number of
connected components. After a probabilistic modelling andan
entropic coding of the output, the numerical results show a
substantial improvement above the current state of the art,with
an average rate of 1 bit per vertex, reaching below 0.1 bpv for
well sampled meshes. In addition, the algorithm can be used
in parallel with currently most performing geometric compres-
sion methods, which results in very competitive overall rates.
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The main limitations of the method might be its computing
times, relatively high compared to some of the state-of-the-
art algorithms, and its memory footprint, which exclude for
now the compression of gigantic meshes on standard 32-
bit personal computers. As a result, the optimization of the
compression, and above all, of the decompression algorithm
remains a primary perspective for this work.

The compression rates could probably be improved through
more accurate probability models for the entropic coder, and
even more, through a better coding of the non Delaunay
facets. Similarly, it could be possible to keep improving the
behavior of the convection algorithm, by opening the facets
more accurately, according to some smarter criterion than the
local vertex distribution. However, we are currently working
on the generalization of this work to multiresolution, which
is surely the most important perspective of this paper. This
will be made possible by progressive insertion of vertices in
the convection surface [58], under the constraints imposedby
a kd-tree type progressive geometric coder. About the GD
coder, a last significant perspective consists in integrating it
to the convection process, in order to improve the geometric
prediction by using connectivity information.

Finally, we would like to add that the impressive results
obtained with the most favorable models illustrate the rele-
vance of the research fields focused on Delaunay meshes, in
particular the methods that aim at producing such models from
point clouds or from non Delaunay meshes [59], [60].

ACKNOWLEDGMENT

This research takes place into the ACI projectsEros3D and
Triangles, supported by the FrenchCentre National de la
Recherche Scientifique(CNRS). Some of the 3D models ap-
pearing in this paper are provided courtesy ofAIM@Shape
(IMATI and INRIA). The triple hecate model is provided
courtesy of Christian Lahanier from C2RMF (Muśee du
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(a)

(b)

(c)

(d)

Fig. 5. (a) triplehecate (detail): 75729 vertices and 151462 triangles coded
with 0.04 bits per vertex, (b) maxplanck: 199169 vertices and 398043
triangles, 0.90 bits per vertex, (c) ajax: 273383 vertices and 547117 triangles,
0.14 bits per vertex, (d) hand: 327290 vertices and 654596 triangles, 0.19 bits
per vertex. These models resulting from scans are usually characterized by a
small number of non Delaunay triangles. The vertex density locally reflects the
distance to the skeleton and these meshes are probably produced by Delaunay
based reconstruction algorithms.

(a)

(b)

(c)

Fig. 6. CAD meshes are essentially unfavorable to our method: (a) and (b)
non Delaunay triangles of theford model, (c) UNC powerplant: 11070509
vertices and 12748510 triangles coded with more than 2.16 bits per vertex.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2. a) MeshM to be coded b) Delaunay triangulation ofM vertices and initialization ofS c) The first visited facet has been opened (t=1) d) The second
facet has been retained (t=2) e) The tenth visited facet has been opened (t=10) f) Production of a RDG event at t=11, against the convection rules g) RDG
event at t=12 h) Two kinds of facets inS at stabilization of the convection process : red facets for which RDG events have occurred, and blue facets that
have been retained (whereas some of them are not present inM) i) Each retained facet (in blue) is considered in turn. An ODG event is produced for the
27th facet of that kind at time t=249 (previously examined facets are green colored) j) The convection process is locallyrelaunched at the level of the opened
facet k) The local convection process is stabilized l) ODG events combined with local convection processes are pursued until the initial mesh is reached.tOi
and tRi denote time steps when further ODG and RDG events occur.


